Disproof of a Conjecture of Neumann-Lara

نویسندگان

  • Bernardo Llano
  • Mika Olsen
چکیده

We disprove the following conjecture due to Vı́ctor Neumann-Lara: for every pair (r, s) of integers such that r > s > 2, there is an infinite set of circulant tournaments T such that the dichromatic number and the cyclic triangle free disconnection of T are equal to r and s, respectively. Let Fr,s denote the set of circulant tournaments T with dc(T ) = r and − →ω 3 (T ) = s. We show that for every integer s > 4 there exists a lower bound b(s) for the dichromatic number r such that Fr,s = ∅ for every r < b(s). We construct an infinite set of circulant tournaments T such that dc(T ) = b(s) and − →ω 3(T ) = s and give an upper bound B(s) for the dichromatic number r such that for every r > B(s) there exists an infinite set Fr,s of circulant tournaments. Some infinite sets Fr,s of circulant tournaments are given for b(s) < r < B(s).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disproof of the Mertens Conjecture

The Mertens conjecture states that  M(x)  < x ⁄2 for all x > 1, where M(x) = n ≤ x Σ μ(n) , and μ(n) is the Mo bius function. This conjecture has attracted a substantial amount of interest in its almost 100 years of existence because its truth was known to imply the truth of the Riemann hypothesis. This paper disproves the Mertens conjecture by showing that x → ∞ lim sup M(x) x − ⁄2 > 1. 06 ....

متن کامل

A conjecture of Neumann-Lara on infinite families of r-dichromatic circulant tournaments

In this paper we exhibit infinite families of vertex critical r-dichromatic circulant tournaments for all r ≥ 3. The existence of these infinite families was conjectured by NeumannLara (7), who later proved it for all r ≥ 3 and r 6= 7. Using different methods we find explicit constructions of these infinite families for all r ≥ 3, including the case when r = 7, which complets the proof of the c...

متن کامل

1 1 O ct 2 01 1 Disproof of the List Hadwiger Conjecture

The List Hadwiger Conjecture asserts that every Kt-minor-free graph is t-choosable. We disprove this conjecture by constructing a K3t+2-minor-free graph that is not 4tchoosable for every integer t ≥ 1.

متن کامل

On Support Points of Univalent Functions and a Disproof of a Conjecture of Bombieri

We consider the linear functional Re(a 3 + a 2) for 2 iRon the set of normalized univalent functions in the unit disk and use the result to disprove a conjecture of Bombieri.

متن کامل

Disproof of the List Hadwiger Conjecture

The List Hadwiger Conjecture asserts that every Kt-minor-free graph is tchoosable. We disprove this conjecture by constructing a K3t+2-minor-free graph that is not 4t-choosable for every integer t ≥ 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017